TEM characterization of MnO2 cathode in an aqueous lithium secondary battery

نویسندگان

  • Manickam Minakshi
  • David Mitchell
  • Pritam Singh
  • Stephen Thurgate
چکیده

The discharge characteristics of manganese dioxide cathode in the presence of small amounts (1, 3 and 5 wt. %) of titanium disulphide (TiS2) additive has been investigated in an alkaline cell using aqueous lithium hydroxide as the electrolyte. The incorporation of small amounts of TiS2 additives into manganese dioxide (MnO2) was found to improve the battery discharge capacity from 150 to 270 mAh/g. However, increasing the additive from 3 to 5 wt. % causes a decrease in the discharge capacity. Hence, the objective is to gain insight into the role of TiS2 in MnO2 and its mechanism. For this purpose, we have used transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and secondary ion mass spectrometry (SIMS). The valence state determination and the depth profile analysis of the discharged MnO2 were performed using EELS and SIMS techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of B4C addition to MnO2 in a cathode material for battery applications

Boron carbide (B4C) added manganese dioxide (MnO2) used as a cathode material for a Zn–MnO2 battery using aqueous lithium hydroxide (LiOH) as the electrolyte is known to have higher discharge capacity but with a lower average discharge voltage than pure MnO2 (additive free). The performance is reversed when using potassium hydroxide (KOH) as the electrolyte. Herein, the MnO2 was mixed with 0, 5...

متن کامل

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Microstructural and spectroscopic investigations into the effect of CeO2 additions on the performance of MnO2 aqueous rechargeable battery

The influence of CeO2 additions on the electrochemical behaviour of the MnO2 cathode in a Zn-MnO2 battery using lithium hydroxide (LiOH) as an electrolyte is investigated using microscopy and spectroscopic techniques. The results showed that such additions greatly improve the discharge capacity of the battery (from 155 to 190 mAh/g) but only from the second discharge cycle onwards. Capacity fad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006